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Abstract—In this work, we consider the joint optimization of
virtual cell association and the precoder design for a multi-
user downlink cloud radio access network (C-RAN). The optimal
design of cell associations and precoders are particularly relevant
due to the anticipated ultra-dense networks suffering from heavy
interference. As the resulting optimization is a non-convex and
combinatorial problem, we propose an iterative low complexity
algorithm, employing the recently developed penalty dual decom-
position (PDD) framework. In contrast to predominantly used
sparsity inducing methods, the proposed method incorporates the
penalty/re-weighting strategy into the algorithm, which is then
solved as a sequence of convex second-order cone programs. The
aforementioned feature leads to a high convergence rate and
subsequently a low computational cost for the proposed algorithm.
Furthermore, the proposed algorithm meets the requirements to
converge to a KKT solution. Numerical simulations verify the
superior performance of our proposed method in ultra-dense
networks, in comparison to commonly used methods, such as the
reweighted `1-norm, in terms of system energy efficiency.

Index Terms—Signal processing, convex optimization, mixed
integer programming, cloud radio access network.

I. INTRODUCTION

The remote radio heads (RRHs) in a C-RAN are connected
via fast fronthaul links to the central unit (CU) which contains
a baseband unit (BBU) pool. The availability of global CSI
and high computational power at the CU allows RRHs to form
a cooperative cluster. This paradigm replaces the traditionally
strict concept of cell association by one where the CU groups
the antennas to serve a user by selecting multiple RRHs. For this
purpose, the term virtual cell association is more appropriate for
referring to the RRHs that are selected to serve a given user.
This work focuses on minimizing the power consumption of a
network, including the power required in the fronthaul, via joint
optimization of the virtual association and precoding. This joint
optimization problem is motivated by the following arguments:
I) cooperative techniques incur additional fronthaul load and
power which must be accounted for II) conventional association
schemes, e.g., based on distance or SNR do not suit the ultra-
dense networks as they cause load imbalance III) fluctuating
SINR demands or channel conditions may justify optimizing
the user association on a shorter time-scale than traditionally.

Motivated by the advancements in compressed sensing,
the majority of existing works use `0-norm approxima-
tion/relaxation to describe the relationship between the pre-
coding vectors and the cell association. The authors in [1]–
[7] all proposed variations of sparsity inducing norms, e.g.,
reweighted `1-norm, for joint precoding and cell association.
This is approached by formulating a power minimization or
rate maximization problem, where the association is expressed
via the `1-norm of the precoding vectors and then solving the
problem as cone programming or via semi-definite relaxation.
Other works [8], [9], proposed frameworks based on mixed-
integer programming for joint user association and beamform-
ing in a C-RAN. The authors in [10]–[12] proposed sparse
approximations/relaxations to minimize the power consumption
and provide robustness. In our previous work [13], a mixed
integer-second order cone programming (MI-SoCP) framework
was proposed for a C-RAN with limited CSI and fronthaul
capacity. While MIPs offer a high-quality solution, they are
computationally inefficient to solve. On the other hand, iterative
sparsity inducing norm methods benefit from low computation
complexity while offering sub-optimal solutions. Furthermore,
as sparsity inducing norms do not explicitly include the asso-
ciation, they require careful pruning and post-processing which
is not only a cumbersome task but can also degrade the quality
of the solution.

We propose a novel algorithm for joint virtual cell association
and precoding optimization. This is the first work to consider the
application of PDD to this class of combinatorial problems. The
proposed method replaces the NP-hard MIP problem by a se-
quence of convex problems, thus offering a significant reduction
in computational complexity. Furthermore, the proposed algo-
rithm has the significant advantage of reaching a KKT solution
of the substitute problem to the original MIP. Simulation results
indicate that the proposed method outperforms the reweighted
`1-norm, in ultra-dense networks.

A. Notation:

Uppercase calligraphic, lowercase and uppercase bold letters
denote sets, vectors and matrices, respectively. C, < and =,
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denote the set of complex numbers, the real and imaginary parts
of a complex number, respectively. The Hermitian transpose and
Euclidean norm are denoted by (·)H , ‖·‖2, respectively. We use
vec{A} to show the vector concatenation of the columns of A.

II. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we describe the system model of the C-RAN
and formulate the corresponding optimization problem.

We consider an ultra-dense C-RAN, populated by I RRHs
and J co-channel downlink users. The RRHs, which can encode
and decode, are assumed to perform channel estimation and
transfer the information to the CU which then returns the
designed precoding vectors and associations. The set of RRHs
and users is described by I = {1, . . . , I} and J = {1, . . . , J},
respectively. Each RRH i is equipped with M antennas and
has a maximum transmit power of Pmax

i . Users are assumed
to be equipped with a single antenna and have a desired QoS
given as the minimum required average SINR and rate, denoted
by γj and rj , 1 ≤ j ≤ J. The channel between the i-th
RRH and the j-th user is represented by hij ∈ CM×1 and
is modeled as uncorrelated block flat fading with Rayleigh
distribution. The precoding vector between the i-th RRH and the
j-th user is denoted by wij ∈ CM×1. For ease of notation, we
define hj ∈ CMT×1 and wj ∈ CMT×1 as the global channel
and precoding vectors of the j-th user, where MT = I ·M .
The data symbol intended for the j-th user is represented as
sj ∼ CN (0, 1). The complex additive white Gaussian noise
(AWGN) is denoted by zj ∼ CN (0, σ2

j ). For the described
system, the received signal by the j-th user can be written as

yj = hHj wjsj +
∑
q 6=j,

hHj wqsq + zj , j, q ∈ J . (1)

The virtual cell association between the i-th RRH and the j-th
user is given by αij ∈ {0, 1}, where a one indicates an active
association and vice versa. Note that an active association not
only has the implication that the corresponding precoder is non-
zero, but also influences fronthaul load.

A. Network Power Consumption Model

The power consumption considered in the network is com-
prised of the transmit power at each RRH and the power
consumption of the fronthaul links. As the signaling overhead
takes place on a larger time scale, we assume the fronthaul load
is dominated by the users’ data.

The fronthaul model used follows that of [14] for microwave
links with the fronthaul power consumption given as

PFHi =

∑
j αijrj

Ci
PFHi,max, i ∈ I, (2)

where Ci and PFHi,max denote the capacity of the fronthaul
communication channel and the power dissipation, respectively.

The total network power consumption is expressed as

PTot({αij}, {wj}, {PFHi }) =
∑
i,j

‖wij‖22 +
∑
i

PFHi ,

i ∈ I, j ∈ J .
(3)

B. Problem Formulation
We begin by formulating the joint virtual cell association and

precoder optimization as a MI-SoCP problem as shown in [13]

P1 :

min
{αij},{wj},{PFH

i }
PTot({αij}, {wj}, {PFHi })

s.t. (2),∥∥wij

∥∥2
2
≤ αijPmaxi , i ∈ I, j ∈ J , (4a)∑

j

∥∥wij

∥∥2
2
≤ Pmaxi , i ∈ I, (4b)∥∥∥∥∥

(
vec{hHj W}

σj

)∥∥∥∥∥
2

≤

√
1 +

1

γj
hHj wj ,

j ∈ J , (4c)

={hHj wj} = 0, j ∈ J , (4d)

αij ∈ {0, 1}, i ∈ I, j ∈ J , (4e)

where W ∈ CMT×J is the concatenation of the global precod-
ing vector of all users. Note that (4a) relates the association
and the precoding vectors while constraint (4b) represents the
maximum transmit power constraint per RRH. Note that P1 is
NP-hard and computationally expensive to solve.

III. PDD-BASED JOINT VIRTUAL CELL ASSOCIATION AND
PRECODER OPTIMIZATION

In order to facilitate the implementation of the proposed PAP
algorithm, we first propose a reformulation of P1.

A. Problem Transformation
As the complexity in solving P1 arises from the binary

association constraint (4e), we first consider the following
equivalent reformulation

αij ∈ {0, 1} ≡ α2
ij − αij = 0. (5)

Although (5) is still non-convex, we aim to obtain a tractable
structure for the PDD algorithm by using an auxiliary variable
βij , and expressing the above constraint as

αijβij = 0, (6a)
αij + βij = 1. (6b)

This facilitates a reformulation of the optimization problem as

P2 :

min
{αij},{βij},{wj},{PFH

i }
PTot({αij}, {wj}, {PFHi })

s.t. (2), (4a), (4b), (4c), (4d),
(6a), (6b), i ∈ I, j ∈ J .

We note that in P2, the constraints related to the association
are still expressed using αij . While P2 is not jointly convex
over all the optimization variables, due to constraint (6a), the
optimization variables can be separated and updated in a block-
wise manner in adherence with the PDD algorithm.
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B. PDD Method

In this subsection, we briefly explain the general PDD
method [15], which is used in our proposed framework. For
this purpose, we consider the following optimization problem

min
x

f(x)

s.t. z(x) = 0,

gi(xi) ≤ 0, ∀i ∈ {1, . . . , n},
(8)

where f(x) ∈ R, is a scalar and continuously differentiable
function, while z(x) ∈ Rm is a vector of m continuously
differentiable functions, but possibly coupled and non-convex,
and gi(xi) ∈ Rn is a vector of n differentiable functions. Note
that if the coupled constraint z(x) = 0 did not exist, then
a KKT solution to the above problem could be obtained by
employing block coordinate descent methods such as BSUM.
The PDD method aims to resolve the coupled equality constraint
via a double loop algorithm, where outer loop updates the
dual variables and the penalty weights and the inner loop
solves the Augmented Lagrangian (AL) optimization problem
corresponding to (8) as shown below

min
x

f(x) + ηT z(x) +
1

2ρ
‖z(x)‖2

= f(x) +
1

2ρ
‖z(x) + ρη‖2,

s.t. gi(xi) ≤ 0, ∀i ∈ {1, . . . , n},

(9)

where ρ and η denote the penalty weight and the dual variable,
respectively. It is clear that for a sufficiently large 1

2ρ , the
solution of (9) is identical to (8). However, achieving a signifi-
cantly large weight with standard penalty methods may lead to
slow convergence, or ill-conditioned problems. For this purpose,
when the violations are larger than a threshold z(x) > ε, PDD
updates the penalty weight as ρk+1 = cρk. On the other hand,
when the violations are small, z(x) ≤ ε, the dual variables are
updated using dual ascent [16] as ηk+1 = ηk + 1

ρk
z(x).

C. Proposed PDD-based Association and Precoding (PAP)
Algorithm

The corresponding AL problem for P2 is derived as follows

P3 :

min
{αij}, {βij},
{wj}, {PFH

i }

PTot({αij}, {wj}, {PFHi }) + 1

2ρk

∑
i,j

φkij

s.t. (2), (4a), (4b), (4c), (4d), i ∈ I, j ∈ J ,

where k denotes the k-th outer iteration and φkij =(
|αijβij + ρkλkij |2 + |αij + βij − 1 + ρkµkij |2

)
. Furthermore,

ρk, λkij and µkij denote the penalty weight and the Lagrangian
multipliers associated with constraints (6a) and (6b), respec-
tively. We can solve the AL in P3 by separating the variables
into two blocks, hence, creating two sub-problems: 1) while
fixing {βij} solve P3 for {αij}, {wj} and {PFHi }. 2) fixing
{αij}, {wj} and {PFHi } solve P3 for {βij}. It is worth

mentioning that optimizing the AL over each variable block
is convex, furthermore, the solution of the second sub-problem
can be obtained in closed form as

βij =
1− αij
α2
ij + 1

. (11)

The proposed PAP framework is summarized in Algorithm 1.

D. Initialization

For the first iteration of the algorithm, it is necessary to
initialize βij ∈ [0, 1]. However, since the algorithm is capable
of optimizing the associations {αij}, a heuristic initialization
is sufficient. Nevertheless, it is obvious that a good initial point
can lead to faster convergence and/or a better solution. For this
purpose, given the channel vectors hj , we set all associations to
one and use zero-forcing precoding together with water-filling
power allocation [17] to satisfy the QoS constraints γj . From
this we then calculate the effective SNR between each RRH
and user pair and initialize βij to favor the strongest links as
follows

βij = 1− SNRij
maxi SNRij

, (12)

where SNRij denotes the SNR between the i-th RRH and j-th
user.

Algorithm 1: Proposed PAP algorithm

Initialization: λkij = 0 µkij = 0, ε = 0.1, ρ0 = 1e−3

c = 0.25, k = 1, βij see Section III-D
repeat

repeat
Solve P3 over {αij}, {wj} and {PFHi } via
off-the-shelf solvers e.g., Gurobi [18].

Compute βij via (11);
until Convergence of AL objective;
if max

i,j
{|αijβij | , |αij + βij − 1|} ≤ ε; then

λk+1
ij = λkij +

1
ρk
(αijβij);

µk+1
ij = µkij +

1
ρk
(αij + βij − 1);

else
λk+1
ij = λkij ;
µk+1
ij = µkij ;
ρk+1 = cρk;

end
k = k + 1;

until Convergence of constraint violation;

E. Convergence & Complexity Analysis

P3 is a special case of the general problem studied in [15],
where the PAP leads to a solution satisfying the KKT con-
ditions, given that the inner loop converges to a stationary
point of the AL. At each inner iteration, the AL problem is
convex with respect to the block variables and can be solved
optimally. In this regard, we achieve a monotonic decrease for



4

both the overall PDD objective for every inner iteration as well
as the constraint violation for every outer iteration, as shown
in Section IV via numerical evaluation. Furthermore, as the
objective and constraints are smooth and decoupled, we meet
the requirements specified in [19] for converging to a KKT
solution. As the proposed framework achieves a KKT solution
for P2, the solution is also inherently feasible for P1, as the
obtained associations will satisfy the binary constraint.

The arithmetic complexity of the original problem presented
in P1 is NP-hard, which makes it impractical to solve for large
sizes. In contrast, since the update to {βij} can be obtained in
closed form, the complexity in our proposed algorithm comes
from solving instances of P3 as second order cone programming
(SoCP). Supposing the algorithm solves K instances of P3 to
satisfy the convergence criteria the complexity is approximately
O((IJM)3.5K).

In terms of computational run-time, while P1 can be cast
as a MI-SoCP, for which there are off-the-shelf solvers such as
Gurobi, the run-time grows exponentially with the problem size.
Therefore, comparing the computation run-time performance is
not only dependent on the solver, but also impractical for larger
problems where our proposed algorithm offers significant gains.
Nevertheless, Table I. in Section IV offers an insight into the
average run time of solving an instance of the SoCP in the PAP
algorithm compared to the MI-SoCP.

IV. SIMULATION RESULTS & DISCUSSION

In this section, we present numerical simulations to evaluate
the performance of the system under 3GPP LTE specifications.
3 RRHs and 4 downlink users are assumed to populate a C-
RAN with a radius of 250 m. Each RRH is equipped with
two antennas and has a maximum transmit power Pmaxi = 43
dBm. The fronthaul link parameters are set as Ci = 10 Gbps
and PFHi,max = 50 W. We assume a carrier frequency of 2 GHz
and a channel bandwidth of 10 MHz in the access network.
The channels follow an uncorrelated Rayleigh distribution with
shadowing and σj = −164 dBm/Hz. Due to the limitation of
space, we refer the reader to [13] for a detailed overview of the
simulation parameters and setup. The simulations results are
averaged over 200 channel realizations.

Table I. offers insight into the computation run time perfor-
mance of the PAP algorithm.

TABLE I: Run time vs. complexity

Average Run Time [s]
Complexity SoCP instance Total PAP Convergence MI-SoCP

#RRH = 2,#User = 3 0.08 7.09 1.41
#RRH = 3,#User = 4 0.12 10.26 54.53
#RRH = 4,#User = 5 0.14 12.97 366.85
#RRH = 4,#User = 7 0.18 16.91 −
#RRH = 5,#User = 9 0.24 23.30 −

Figure 1 illustrates the reduction of the objective value of the
AL in the PAP algorithm, with respect to the inner iterations,
where convergence is typically achieved within 5 iterations.
The convergence of sum violation corresponding to binary
constraints (6b) and (6b) is shown in Fig. 2. We note that once
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Fig. 1: Inner loop convergence behaviour of Algorithm 1.
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Fig. 2: Outer loop convergence behaviour of Algorithm 1.

the constraint violations are small enough, the algorithm can
be terminated and a pruning step can be applied to obtain truly
binary association variables. The fast convergence rate in both
inner and outer loops demonstrate the low computation time
required, which is due to the dynamic penalty update rules in
the algorithm.

The total network power consumption is evaluated in Fig. 3. It
is observed that the proposed algorithm offers significant power
reduction compared to reweighted `1-norm. More specifically,
it achieves an improvement of over 50% at low data rate
requirements and almost 10% for higher data rates and benefits
from a smaller optimality gap.

The fronthaul load imposed on the network is studied in
Fig. 4, where it can be deduced that the PAP algorithm
consumes less capacity than reweighted `1-norm. The inferior
performance of reweighted `1-norm is explained by the fact
that in ultra-dense setups, the majority of users may receive a
reasonable effective SINR from multiple RRHs as opposed to
a single dominant node. Consequently, achieving sparsity by a
fixed re-weighting rule is more difficult.

The superior performance of the PAP algorithm, relative
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Fig. 3: Power consumption comparison of different methods.
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to reweighted `1-norm, is explained by its ability to more
accurately model the relationship between the association and
precoder as defined in constraint (4a). This is realized by
the inclusion of the binary penalty terms in the AL, that
promote the association to binary values, and the dynamic
update mechanism incorporated in the algorithm, that depends
on the constraint violation. In contrast, reweighted `1-norm has
a fixed update rule and does not directly include the association
variables. Furthermore, it typically relies on more advanced
pruning as the obtained solutions are not as close to binary
values, especially in ultra-dense networks where a user can
receive a high effective SINR from multiple RRHs.

V. CONCLUSION

In this work, we proposed a new energy-efficient algorithm
for the joint optimization of virtual cell associations and pre-
coders. The aforementioned problem is known to be non-convex
and combinatorial and is widely solved via sparsity inducing
norms. Our proposed framework employs the recently devel-
oped PDD method to solve a sequence of convex problems. The

proposed framework dynamically adjusts the penalty weights
and dual variables to promote binary values, using an update
mechanism incorporated in the algorithm. The PAP algorithm
displays a fast convergence to a KKT solution, and a similar
computation complexity to reweighted `1-norm, while achieving
a significant improvement in terms of power consumption.
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